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Abstract
We discuss in detail the assembly of two-dimensional identical bubbles in
stable clusters. The clusters are classified into perfect and defective clusters,
depending on the number of sides of their inner cells (defective clusters have
inner cells with a number of neighbours different from 6). We evaluate the
surface energy of clusters by a broken-bond method and compare with exact
energy calculations for simple clusters. Special attention is given to perfect
clusters which are classified by their symmetry. For particular values of
the number of cells, N , called magic numbers, perfect clusters have special
properties. We identify the clusters of smallest energy, for fixed number of
cells N (minimal clusters). For large N the minimal clusters are perfect, but
for small N a minimal cluster may be a defective cluster.

We produced two-dimensional clusters with N up to 15 by the ‘monolayer
foam’ method and studied their relative incidence for N = 6.

1. Introduction

A foam is a cluster of soap bubbles, the energy of the cluster being smaller than the energy
of the separated, spherical bubbles. The bubbles can assemble in various stable arrangements
with different topologies and different free energies. The configurations of three-dimensional
clusters have been determined only for clusters with 2 to 4 bubbles [1], for which the films
are spherical. For larger numbers of cells, the clusters may have non-spherical films [2] and
‘solving’ them is not a simple problem. Two-dimensional (2D) clusters are simpler to analyse
(circular films) and can be produced experimentally. Smith [3] discussed 2D free clusters of
bubbles and gave examples of alternative topologies for fixed numbers of bubbles. He also
prepared 2D confined clusters of bubbles for coarsening experiments.

This paper discusses in detail 2D clusters of N identical bubbles. We identify the stable
clusters for given N and develop methods to estimate their surface energies. We pay particular
attention to minimal clusters, defined as the clusters of smallest energy for fixed N . We also
report experiments on 2D bubble clustering, in which N initially separated bubbles assemble
in various arrangements.

The gas in and surrounding the cluster will be treated as incompressible. The area of a
2D bubble is thus invariant and independent of its association with other bubbles; and the total
energy of a cluster reduces to its surface energy.
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The plan of the paper is as follows. Section 2 introduces various definitions and terms
related to 2D clusters of identical cells (we use the term cell as synonymous with bubble) and
classifies clusters into perfect and defective clusters. In perfect clusters all inner cells have six
neighbours. Section 3, which discusses perfect clusters, introduces the broken-bond method
for evaluating the energy of clusters. The energy is proportional to a broken-bond number,
B, defined as the total number of missing neighbours of the peripheral cells of the cluster.
Symmetry of perfect clusters and magic numbers are also discussed in section 3. Section 4
evaluates the energies of clusters of any type and fixed N and identifies the minimal clusters for
each N . Section 5 describes the experimental technique used to prepare clusters and section 6
presents the experimental results. The final section contains the conclusions of this study.

The clusters under consideration in this paper are ‘free’ or isolated clusters, in the sense
that the clusters do not contact solid surfaces. Clusters of the latter type can also be analysed
and prepared by similar methods.

2. 2D clusters of identical bubbles; broken bonds

When N initially separated (circular) bubbles of the same area, A, assemble into a simply
connected 2D cluster (figure 1(a)), the total length of films decreases; two adjacent bubbles

Figure 1. (a) Clustering of originally separated bubbles. (b)–(f ) Various stable and unstable
clusters. Cluster (e) is a defective cluster; the others are perfect clusters. Cluster (f ) does not
satisfy the rule of maximum row overlapping. We indicate the number of broken bonds of the
peripheral cells of this cluster.
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in the cluster share a common film. The N cells can assemble in various ways but we will
consider only stable arrangements. The clusters prepared experimentally are all stable, in the
sense that the cells remain in the same configuration when subjected to small perturbations
(see section 5).

Triangulation is a necessary condition for cluster stability, according to our experimental
observations. We construct the dual graph of the cluster by connecting the centre of each cell
with the centres of adjacent cells, as in figures 1(b)–1(d). If no bonds dangle, triangulation
is achieved and the cluster is stable (figures 1(a), 1(c), 1(e), 1(f )); otherwise the cluster is
unstable (figures 1(b), 1(d)). A single row of connected cells is not stable (figure 1(d)) but two
overlapping rows are stable (figure 1(c)).

(Stable) clusters fall into two classes: perfect clusters, in which all inner cells have n = 6
neighbours (these include clusters with no inner cells) and defective clusters, with at least one
inner cell with n �= 6. The stable clusters of figures 1(a), 1(c) and figure 2 are perfect; the one
in figure 1(e) is a defective cluster with an inner five-sided cell.

Figure 2. Perfect clusters with smallest bond number, B, for various values of N : N = 9, B = 22;
N = 11, B = 24; N = 16, B = 28. We indicate the {Ni} sequences. N = 16 is a magic number.

An infinite cluster of identical regular hexagonal cells forms a honeycomb. Each cell is
surrounded by six cells and has six bonds with other cells. In a (finite) cluster, the peripheral
cells (i.e., cells with a film not shared by another cell) in general have a number of neighbours
p < 6. The total number of missing or broken bonds in the cluster is defined as

B =
∑

(6 − p) (1)

summed over all peripheral cells. We will use this number to evaluate the energy of a cluster
or, more precisely, its excess energy in relation to that of the same number of cells of equal
area, A, in a honeycomb. Figure 1(f ) shows the numbers (6 − p) of broken bonds for each
peripheral cell in a cluster.
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We can obtain the number of broken bonds of a cluster of N cells, of which I are internal
and P = N − I are peripheral, from the following equations:

B = 6 + 2N − (8 − n̄i)I = 6 + 2P + (n̄i − 6)I (2)

where n̄i is the average number of sides of the internal cells. We derive this by applying to
the cluster of internal cells, which has trivalent vertices and d dangling edges, the following
topological relation [4]:

n̄i = 6 − 6 + Ep − 2d

N
(3)

where Ep is the number of peripheral edges of the inner cell cluster (obtained from the original
cluster by removing the peripheral edges). Noting that d = P and B = 4p −Ep, equation (2)
follows.

For clusters with n̄i = 6 and, in particular, for perfect clusters, equation (2) simplifies to

B = 6 + 2P. (4)

For large perfect clusters, the average number of broken bonds per peripheral cell, B/P , is 2.
The cluster of smallest energy for given N will be termed the minimal cluster. Broadly,

we expect minimal clusters to have smaller values of B, but they may not because defects in
the cluster alter the average bond energy in the cluster. This will be discussed in detail in
section 4. For perfect clusters, B provides a simple evaluation of the cluster energy and can
be used in the search for minimal clusters of this type. Therefore, we will first analyse perfect
clusters.

3. Perfect clusters

3.1. Description of perfect clusters

We describe a perfect cluster (P cluster) as formed by R successive close-packed rows of cells,
each with Ni cells. The cluster has a packing sequence {Ni}. In drawings of clusters, we place
the rows horizontally with row 1 at the top and row R at the bottom. A P cluster in general
has three different {Ni} descriptions, because it has close-packed rows in three orientations
(examples are given in figure 2(b)). In addition, a given {Ni} sequence does not in general
define a unique cluster because the successive rows can pack in different ways (figure 2). The
{Ni} sequence is nevertheless convenient to use in discussing low-energy P clusters.

3.2. Broken-bond number of perfect clusters

Packing the successive rows with maximum overlap reduces the energy of clusters with a given
{Ni} sequence, since overlap reduces the B-number of the cluster. The cluster of figure 1(f )
does not satisfy the condition of maximum row overlap. In the following, we consider only
this type of cluster and {Ni} sequences with maximum overlap.

The maximum B for a fixed N in (stable) perfect clusters occurs for the cluster formed
by two overlapping rows of cells with a {2, 2, . . . , 2} sequence as in figure 1(c). The bond
number is

Bmax = 4N + 2. (5)

Determination of the minimum B for given N is not simple. The {Ni} sequence of a P cluster
of minimum B has �Ni = 0,±1 which minimizes the number of peripheral cells (cf. (4)).
For these clusters, the number of peripheral cells is 2R − 4 + N1 + NR and

B = 2(2R + N1 + NR) − 2. (6)
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It is convenient to define regular {Ni} sequences formed by two half-sequences of successive
integers for which all �Ni = ±1 (for example, {2, 3, 4, 5, 6, 5, 4}). Equation (6) of course
applies to such clusters. The general form of a regular {Ni} sequence is

{i, i + 1, . . . , i + n, . . . , i + n − m} n � m. (7)

The largest Ni is i +n. The sequence defines a unique cluster. To obtain the number N of cells
in the cluster we note that

n∑
k=1

k = n2 + n

2
(8)

where k is an integer. The result is

2N = (2i + n)(n + 1) + (2i + 2n − m − 1)m. (9)

The number R of rows in the sequence (7) is

R = n + m + 1 (10)

and the broken-bond number, B, is

B = 2(2i + 3n + m + 1). (11)

Before proceeding with the identification of the P clusters of smallest energy, we classify
P clusters according to their symmetry.

3.3. Symmetry of P clusters

Perfect clusters can be classified according to their (maximum) symmetry into four classes:
(A) clusters with a sixfold axis of symmetry; (B) clusters with a threefold axis of symmetry;
(C) clusters with a plane of symmetry; (D) clusters with no symmetry. Class (C) includes
clusters with two symmetry planes (and therefore a twofold axis of symmetry) and class (D)
includes clusters with a centre of symmetry. Figure 3 shows examples of each type. Defective
clusters can also be classified by symmetry, but this will not be considered.

Turning to P clusters with regular {Ni} sequences, the symmetry classes defined above
associate with the following sequences, which are particular cases of the general form (7):

(1) For

N = m = i − 1

the {Ni} sequence is

{i, i + 1, . . . , 2i − 1, . . . , i + 1, i}
with

N = 3i2 − 3i + 1

R = 2i − 1

B = 12i − 6.

(12)

These clusters have a sixfold axis of symmetry and thus only one {Ni} description.
(2) For

m = i − 1 n �= i − 1

the {Ni} sequence is

{i, i + 1, . . . , i + n, . . . , n + 1}
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Figure 3. Examples of perfect clusters of the various symmetry classes defined in the text. We
indicate the {Ni} sequences.

with

2N = (2i + n)(n + 1) + (i + 2n)(i − 1)

R = i + n

B = 6i + 6n.

(13)

These clusters have a threefold axis of symmetry and only one {Ni} sequence.
(3) For

m �= n m �= i − 1

the {Ni} sequence is the one given in (7) with N , R and B given by (9)–(11). These
clusters have a plane of symmetry and two equivalent {Ni} sequences. The second {Ni}
sequence is, in general, not regular.

3.4. Magic numbers

Particular values of N have regular {Ni} sequences that define clusters with special properties,
which we will term magic numbers and magic clusters, respectively. The special properties
are:

(1) A magic N has only one P cluster with minimum number, B, of broken bonds.
(2) For a magic N (but not for any other N ), increasing the number of cells by one increases

the broken-bond number, B, by two.
(3) The {Ni} sequence of a magic cluster is regular with N1 and NR equal or differing by

unity.

We searched for magic numbers and their properties empirically.
Introducing property 3 in the general form (7) of a regular sequence determines the magic

numbers listed in table 1 as a function of a single parameter k (integer � 1). The table contains
the regular {Ni} sequence, R, B and the symmetry of the magic clusters. The B is the smallest
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Table 1. Magic numbers and magic clusters.

{Ni} regular N {Ni} regular
N sequence R B Symmetry (k = 2) sequence (k = 2)

3k2 − 3k + 1 k, . . . , 2k − 1, . . . , k 2k − 1 12k − 6 6 7 232
3k2 − 2k(∗) k − 1, . . . , 2k − 1, . . . , k 2k − 1 12k − 4 P 8 1232 (233)
3k2 − k k + 1, . . . , 2k, . . . , k + 1 2k − 1 12k − 2 P 10 343 (2332)
3k2 k, . . . , 2k, . . . , k + 1 2k 12k 3 12 2343
3k2 + k k, . . . , 2k, . . . , k 2k 12k + 2 P 14 23432 (3443)
3k2 + 2k k + 1, . . . , 2k + 1, . . . , k + 2 2k 12k + 4 P 16 3454 (23443)
3k2 + 3k + 1 k + 1, . . . , 2k + 1, . . . , k + 1 2k + 1 12k + 6 6 19 34543

∗ Except for k = 1.

possible for a P cluster with N cells (property 1). The table also gives an example of the {Ni}
sequences for k = 2 (in brackets we give the equivalent sequence, if one exists).

For an N that is not in table 1, the smallest B is equal to that of the following magic number
(property 2). These non-magic numbers have, in general, more than one P cluster of lower
energy which may have threefold symmetry (but not sixfold symmetry), a plane of symmetry
or no symmetry. Figure 2 shows examples of the P clusters of smallest B for N = 9, N = 11
and N = 16. Of these, only the cluster for N = 16 is magic.

Figure 4 shows the smallest number of broken bonds per cell in the cluster, B/N , plotted
as a function of N . It tends to decrease as N increases. But for N > 14, B/N always increases
following a magic number (arrows in figure 4).

Figure 4. The variation of the broken-bond number per cell, B/N , as a function of N for perfect
clusters. The ratio B/N increases following a magic number for N > 14 (arrows).

The minimum bond number B for large N (large k in table 1) is of the order of 12k while
N ∼= 3k2. Thus

Bmin = 4
√

3N1/2 (14)

which can be compared with the maximum bond number, namely Bmax = 4N , for large N

(equation (5)).

4. The energy of clusters

We obtain the surface free energy, Ec, of a 2D cluster (per unit length normal to the plane
of the cluster) by multiplying the total length of films by the film tension, γ . We neglect the
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contributions to the free energy of the triple junctions (Plateau borders) and of the gas in the
bubbles (incompressible gas). An exact calculation of the total film length requires ‘solving’
the cluster, by determining the radii and subtended angles of all films, for given topology
and areas of the cells (circular films meeting at 120◦ at triple junctions and equilibrium of
pressures). Such calculations can be rather complicated since they require solving complex
trigonometric equations. We solved only simple clusters (see appendices 1 and 2).

To avoid the exact solution, we estimate the energy of a cluster on the basis of the number
of broken bonds. Instead of Ec, we use the excess energy, E, of the cluster:

E = Ec − E0 E0 = 3Naγ (15)

where E0 is the energy of the same number of cells (of the same area) in a honeycomb. a is
the edge length of a honeycomb cell of area A:

A = 3
√

3

2
a2. (16)

4.1. Energy of perfect clusters

We obtain the excess energy E of a perfect cluster from

E = Bε(6) (17)

where ε(6) is the average energy per broken bond. The (6) indicates a perfect cluster.
Appendices 1 and 2 show that for perfect clusters ε(6) is weakly dependent on the topology

and size (number of cells, N ) of the cluster, although it tends to increase slightly with size.
Table 2 lists the calculated values of ε(6) for a number of perfect clusters identified in figure 5.

Table 2. Calculated broken-bond energies for the simple perfect clusters of figure 5.

Number of cells Total number of
in cluster, N broken bonds, B ε(6) (aγ units)

1 6 0.452
2 10 0.425
3 12 0.431
4 14 0.432
7 18 0.439

13 30 0.447

Figure 5. Clusters for which we made exact energy calculations. For the last two clusters we made
calculations for 3 � n � 9.

In our search for minimal clusters and in the calculations of the energies of the perfect
clusters obtained experimentally, we used the bond energy

ε(6) = 0.447aγ (perfect clusters) (18)
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for the N = 13 cluster of table 1. Within this approximation, perfect clusters with the same
broken-bond number B, such as the clusters of figure 2 for N = 9 and N = 11, have the same
energy.

4.2. Energy of defective clusters

We will discuss two methods for evaluating the excess energy E of a defective cluster. Both
calculate the energy from the number of broken bonds, B. The first method is more appropriate
for large clusters while the second applies to smaller clusters, with, say, N < 22. A defective
cluster will be characterized by a number S, termed the power of the cluster:

S =
∑

inner cells

(ni − 6) = I (n̄i − 6) (19)

where the ni are the numbers of sides of inner cells and I is the total number of inner cells.
We write the number of broken bonds, B, given by (2), as

B = 6 + 2P + S. (20)

For fixed defective content (e.g. one 5-cell; two 7-cells; etc), we identify the clusters of smallest
B for each N . The B versus N sequences for these defective clusters of smallest energy of
course differ from the one for perfect clusters, but again show jumps (by 2) following particular
values of N . For example, for clusters with a single 5-cell the jumps follow N = 6, 7, 9, 11,
13, 16, 18, 21, . . . (the values for perfect clusters are the magic numbers: 5, 7, 8, 10, 12, 14,
16, 19, 21, . . . ). No simple rules give these numbers for defective clusters of smallest energy.
Instead we found them for N < 22 by drawing all defective clusters with given defect content.

For clusters with smallest energy, the difference between the smallest B-values of perfect
and defective clusters with fixed defect content fluctuates around an average constant value as
N changes. For fixed N , the smallest B for perfect clusters is larger than the smallest B for a
defective cluster of fixed S for S > 0 and smaller for S < 0.

The first method for estimating the excess energy, E, of defective clusters, calculates the
energy from

E = Bε(6) + �Ed (21)

where B is the broken-bond number of the cluster and we take the average energy of a broken
bond equal to the value ε(6) given in (19). The extra energy �Ed is a (positive) strain energy
due to the defects.

To estimate �Ed , we applied our previous analysis [5] of the strain energy of defects
embedded in a honeycomb which is suitable for large equiaxed (round) clusters of small bond
number B, with central defects.

For S = 0 the defect is a pure dislocation and has an associated Burgers vector b (a lattice
vector of the hexagonal honeycomb lattice). For example, a pair of adjacent 5- and 7-cells
has a unit Burgers vector, i.e. a vector between the centres of adjacent hexagonal cells, with
b2 = 3a2; an adjacent 4–8 pair and a 5–7 pair connected by an extra edge have b2 = 9a2; etc.

The strain energy density, w, due to a dislocation b in a honeycomb is [5]

w = G

4π2

b2

r2
(22)

where G is the shear modulus of the honeycomb:

G = 1

2
√

3

γ

a
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and r is the distance to the defect. For a fairly round cluster of outside radius r1, the extra
energy �Ed due to the dislocation defect will be

�Ed =
∫ r1

r0

2πrw(r) dr =
(√

3

4π
λ ln

r1

r0

)
aγ (23)

where λ = b2/(3a2) and r0 is the core radius of the dislocation. Taking r1/r0
∼= (N/2)1/2

yields

�Ed =
√

3

4π
λ ln

(
N

2

)1/2

. (24)

This equation can be used to estimate the contribution of dislocations to the cluster energy. We
expect its accuracy to increase as N increases in fairly round clusters, but have not tested this.

Given a defective cluster with S = 0, there is a perfect cluster with the same N and B and
�Ed = 0 which has lower energy. In the search for minimal clusters, we discard defective
clusters with S = 0. We also discard clusters with S > 0, since, for the same N , there is a
perfect cluster of smaller B with �Ed = 0.

The situation differs for defective clusters with S < 0 because they can have smaller B

than a perfect cluster with the same N . However, the clusters with S < 0 that have to be
considered should have pure disclination character (for example, a single 5-cell or a 5–5 pair).
Clusters with S < 0 with mixed dislocation/disclination character (for example, 5–5–7 cells)
cannot be minimal clusters since replacement of the dislocation (the 5–7 pair, in the example)
by 6-cells reduces the energy at constant N .

For a pure disclination in a honeycomb, the strain energy density is [5]

w = GS2

36
(25)

independently of r . The extra strain energy due to a disclination of strength S in a cluster of
N cells is then

�Ed = NS2

48
aγ. (26)

We used this equation to calculate the energies of disclinated clusters and compared them with
exact calculations for one-shell and two-shell clusters with a central n-cell (appendix 2). For
n < 6 (S < 0), equations (21) and (26) underestimate the excess energy, E, of the cluster by
factors of 1.1 for n = 5 and 1.4 for n = 3; for n > 6 (S > 0), the reverse happens (a factor of
1.1 for n = 7 and of 1.4 for n = 9). Because (21) and (26) overestimate the energy for n > 6,
we cannot rule out clusters with S > 0 disclination defects as minimal clusters.

Our second method for evaluating the energy of defective clusters applies to relatively
small clusters with a single cell with n �= 6. Instead of using the bond energy ε(6), we use a
bond energy ε(n) for each value of n and calculate the energy of a cluster with an n-cell from

E = Bε(n). (27)

The ε(n) come from the exact calculations of appendix 2 for round clusters with a central n-cell
and two surrounding shells of cells (see table A1 in appendix 2). Table 3 gives the ε(n). They
are slightly larger than the corresponding values that can be obtained for one-shell clusters.

The energy of defective clusters of pure disclination character with pairs of cells n �= 6
can be estimated from (27) using the ε(n) for n = 6 − S. For example, for a cluster with a
5–5 pair we use ε(4) in (27).
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Table 3. Broken-bond energies ε(n) in clusters with an n-cell.

n ε(n)

3 0.794
4 0.592
5 0.495
6 0.447
7 0.414
8 0.404
9 0.399

4.3. Identification of minimal clusters

Different clusters of given N may have similar values of the energy. Among the clusters
calculated in appendices 1 and 2 there are two pairs of clusters with the same N . For N = 4,
the cluster with a 3-cell surrounded by 3-cells has a total energy Ec = 19.07 aγ , while the
cluster with two rows of two cells has Ec = 18.26 aγ . For N = 10, the cluster with a central
9-cell surrounded by 9-cells has energy Ec = 40.44 aγ , while a 3-cell surrounded by 2-shells
has Ec = 41.92 aγ .

These small differences in energy make the identification of minimal clusters, using
approximate methods, uncertain. However, a few guidelines help in this search. A minimal
cluster is either a perfect cluster or a cluster with pure disclination character, and any defective
cell in the cluster must have either n < 6 or n > 6.

We have used (27) with the values of ε(n) of table 3 to identity the minimal clusters for
N < 22. The clusters in competition were perfect clusters, clusters with a single n-cell with
3 � n � 9 and clusters with a pair of 5-cells or a pair of 7-cells. Other pairs (e.g. 4–8 and
3–9) have energies that are too high.

Table 4 gives the minimal clusters identified in this way with their excess energies, E,
obtained from (27). We also indicate clusters with the same N and excess energies E differing
by less than 1% from the minimum. (The smallest E is listed first, in bold type.) For N = 20
and N = 22, which are not magic numbers, there are two or more P clusters with the smallest
B, among clusters with the same N . These clusters have the same minimal energy within the
approximate methods used.

Equations (21) and (26) suggest that, for larger N , the minimal clusters are likely to be
perfect clusters. However, equation (27) favours defective clusters with n > 6 cells for large N .

Table 4. Minimal clusters and excess energies for N � 22. (Note: (n) indicates a cluster with one
n-cell. P indicates a perfect cluster.)

N Minimal cluster Excess energy, E (aγ units) N Minimal cluster Excess energy, E (aγ units)

1 P 2.68 12 P 10.73
2 P 4.47 13 (7) 11.18
3 P 5.36 14 P 11.62
4 P 6.26 15 (7) 12.01
5 (4) P 7.10; 7.15 16 (5) 12.38
6 (5) 7.43 17 (7) 12.83
7 P 8.05 18 (5) P 13.37; 13.41
8 (7) 8.69 19 P 13.41
9 (5) 9.41 20 P (5) 14.30; 14.36

10 P 9.83 21 P (5) 14.30; 14.36
11 (7) 10.35 22 P (7) (5) 15.20; 15.32; 15.34
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5. Experimental method

The method used to prepare 2D clusters is a variant of the one used to obtain ‘monolayer’
foams [6, 7]. We formed identical bubbles (volume around 10 mm3) by blowing air into a
solution, through a capillary. As the bubbles come to the surface, they are sandwiched between
the solution surface and a parallel plate above it, at a separation of a few millimetres. The
areas of the bubbles at the plate are around 5 mm2. When formed near each other, they rapidly
assemble into an essentially 2D cluster due to long-range attractive capillary forces between
the bubbles, caused by the liquid menisci at their bottoms, just as in Bragg bubble rafts [8].

Tilting the vessel which contains the solution makes the separation between the solution
surface and the plate non-uniform: the cluster moves to the region where that separation is
smallest and the liquid fraction in the cluster (i.e. in the Plateau borders and films of the cluster)
increases. In the experiments, we increased the tilting angle until the cluster lost rigidity [9]
and separated into individual randomly arranged bubbles (figure 6(a)) embedded in a large
‘pond’ of liquid solution in contact with the plate. Levelling the vessel, the liquid ‘pond’
disappears and the separated bubbles reassemble into varying clusters, as in figures 6(b)–6(e)
for N = 6. The clusters are very stable against shaking the vessel or gently pushing a bubble
with a (submerged) rod.

6. Experimentally observed clusters

The photographs of figures 6–8 show examples of cluster configurations for variousN . Figure 6
shows all configurations observed for N = 6. Figure 7 illustrates various single-defective
clusters for N = 15. The clusters of figure 8 contain a pair of adjacent 5/7-cells (figure 8(a))
or a 5–7 pair connected by an extra edge (figure 8(b)). Most defective clusters obtained
experimentally had inner cells with five and seven sides; a few clusters had cells with n = 4
and n = 8; we never observed cells with three or �9 sides. We found the minimal clusters
of table 4 for all N -values experimentally investigated. These experimental results show
that several cluster configurations occur for fixed N , including configurations of relatively
high energy.

Because of the relatively small height of the bubbles, the Plateau borders at the plate are
large and give, in some photographs, the wrong impression of a double film between adjacent
cells. In fact, a single film separates adjacent cells in the final configuration. We could obtain
drier clusters by increasing the gap between plate and solution using bubbles of larger volume,
which are, however, difficult to form with uniform size.

Inner cells frequently seem to be smaller (smaller area at the top plate) because the height
of the menisci at the solution tends to be smaller in the inner cells than in the peripheral cells,
of lower pressure. The 4-cell in the cluster of figure 8(b) provides an example.

Our cluster preparation method favours relatively round clusters. For example, although
two-row stable clusters (as in figure 1(c)) easily form as a Bragg raft, they are not stable in
the monolayer clusters; when we put the plate on top of a two-row Bragg cluster, it transforms
into a round cluster.

We recorded the incidence of the different clusters for N = 6 in an attempt to correlate
their frequency with energy. Figure 9 shows the frequency of clusters obtained for N = 6
(clusters 1 to 4) plotted as a function of their estimated energies, for 25 clusters. The frequency
and energy weakly correlate. The frequency and the initial positions of the separated bubbles
might also correlate. To check such a correlation we shook six coins inside a circular frame
and determined the Voronoi partition of the circle based on the final positions of the coins.
Figure 9 shows the results for 25 trials. The correlation with experiment is again weak; two
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Figure 6. (a) Six originally separated bubbles in a monolayer. The bubbles are ‘immersed’ in a
large liquid region bounded by an outer interface with air; (b)–(e) the four clusters experimentally
observed for N = 6 bubbles.

of the coin clusters (5 and 6) were not observed with bubbles and the frequency of cluster 4 is
much larger than in the actual clusters. Probably the capillary forces in the experiment favour
the ‘transformation’ of the higher-energy Voronoi clusters 5 and 6, and also 3 and 4 of figure 9,
into a cluster 2. The dynamic problem of bubble assembly is, however, beyond the scope of
this study.
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Figure 7. Clusters with N = 15 cells: (a) perfect cluster; clusters with: (b) a 4-cell; (c) a 5-cell;
(d) a 7-cell. The minimal cluster is (d).

Figure 8. Clusters with a pair of 5- and 7-cells: (a) adjacent; (b) separated.
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Figure 9. The frequency of occurrence of clusters with N = 6: ×: experimental; •: simulation
based on a Voronoi partition of a circle. We obtained only clusters 1 to 4 in experiments. The
estimated total energies of these clusters are indicated.

7. Conclusions

Isolated bubbles may assemble in various stable (metastable) clusters of lower energy. These
clusters differ in their topology and energy. We classified the clusters as perfect and defective
clusters (when inner cells have a number of sides n �= 6) and discussed their general properties.
We analysed perfect clusters in detail, and described them by a sequence of numbers {Ni}.
For particular numbers of bubbles, N , called magic numbers, the perfect clusters have special
properties.

We calculated the (surface) energy of clusters by a broken-bond approach. The con-
tribution of the gas to the energy was neglected since we assumed the incompressibility of the
gas in the bubbles. If the gas is compressible, its contribution to the free energy depends on
pressure, p, and increases as p increases (at constant temperature, T ). Assuming ideal-gas
behaviour, the free energy is RT ln p per mole, where R is the gas constant. The total free
energy of the (ideal) gas in a 2D cluster is then

∑
piAi ln pi , where Ai and pi are the area and

gas pressure in bubble i. To calculate this would require solving the clusters to obtain Ai and
pi for a fixed amount of gas in each bubble (i.e., fixed numbers of moles).

For perfect clusters, the (surface) energy is simply proportional to the number of broken
bonds. For defective clusters, we must add a strain energy term. Alternatively, we can use a
specific bond energy for each type of defective cluster to calculate the energy of relatively small
clusters of low energy. We assessed the accuracy of the broken-bond method by comparing
its results to exact calculations of the cluster energies for simple clusters.

We tentatively identified the clusters of smallest energy for each N (minimal clusters)
using the second method to obtain the energies of defective clusters. For N � 22, the minimal
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clusters are those indicated in table 4. For larger N , the minimal clusters are either perfect
or contain cells with n > 6, but our calculations of energies are not accurate enough when it
comes to the identification of minimal clusters.

We produced clusters experimentally with a special technique, by assembling N initially
separated bubbles. In general, these clusters tend to be ‘round’, of relatively low energies,
including the minimal cluster. Nevertheless, the incidence of the various clusters for fixed N

weakly correlates only with energy and is probably determined by the attractive forces between
the originally separated bubbles and by their initial positions.

The findings of this study may be relevant to biological epithelial tissues formed by
identical cells and to biological processes such as cell sorting [10].

The paper concentrated on the self-assembly of 2D identical bubbles. For 2D bubbles of
different sizes, the number of possible clusters for a given set of cells increases considerably
and the analysis becomes much more complicated. Extension to 3D is also possible, but again
the complexity will greatly increase.
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Appendix 1. Energy of simple perfect clusters

To estimate the bond energy of perfect clusters and assess the accuracy of the broken-bond
method, we calculated exactly the total lengths of films for a few simple clusters. We give an
example of the actual calculations for the cluster of three cells (shown in figure 5(c)) which
has threefold symmetry.

The equilibrium condition of 120◦ angles at triple points implies

R = b (A.1)

where R is the radius of curvature of the outer films and b is the length of an inner film. The
inner films are straight, by symmetry. The area of one cell is

A =
(

π

2
+

1√
3

)
R2. (A.2)

The edge length, a, of a cell of the same area, A, in a honeycomb (A = 3
√

3/2a2) is

a = 1

3
(
√

3π + 2)1/2R. (A.3)

The total length of the films is

L = 3(b + πR) = 6R

(
1√
3

+
π

2

)
(A.4)

or, introducing a,

L = 6

[
3
√

3

2

(
1√
3

+
π

2

)]1/2

= 14.1795 a. (A.5)

The energy of the cluster is Lγ and the bond energy is, for three cells and twelve broken bonds,

εb = L − 3x3a

12
γ = 0.4312 aγ. (A.6)

We can also easily calculate for clusters of one and two cells (figures 5(a), 5(b)). For
the cluster of four cells in figure 5(d), the calculation is more complicated. This cluster has
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three curved films meeting at triple points; the equilibrium of pressures relates their radii
of curvature. Determination of the cluster requires numerical solution of one trigonometric
equation.

Appendix 2. Energy of defective clusters

We solved clusters formed by a central n-cell surrounded by one or two shells of 6-cells
(figures 5(e), 5(f )). The solution for one shell is relatively simple. For two shells we must solve
a system of four trigonometric equations with four unknown quantities. Table A1 indicates our
main result (i.e. the total perimeter of the films in the cluster). The details of the calculations
will not be given.

Table A1. Total film length of one-shell and two-shell clusters with one central n-cell.

Total film length∗

n One shell Two shells

3 19.073 41.916
4 22.158 50.844
5 25.430 60.371
6 28.897 70.415
7 32.561 80.494
8 36.410 91.151
9 40.443 102.333

∗ In units of the edge length a of a honeycomb cell of the same area A as the cells in the cluster
(A = (3

√
3/2)a2).
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